Solve, create, share and talk about jigsaw puzzles

Quiz ....... Which ...... ?

Bookmarked Bookmark Solve this jigsaw puzzle later
ShareShare with your friends
ReportReport as inappropriate
12 pieces
24 solves
Solve puzzle

Thanks for sharing. Here is your html-code:

Why are you reporting this puzzle?

I also trade as manicpuzzler :)

Hello one and all, I hope you are enjoying my puzzle theme.

PLEASE DO *NOT* REVEAL THE ANSWERS SO THAT OTHERS CAN PLAY - MUCH APPRECIATED

I will post the answers this time tomorrow.

Ok here goes .......

Which is the largest planet in our solar system?
a) Mercury
b) Venus
c) Earth
d) Mars
e) Jupiter
f) Saturn

Comments

Please sign in to comment. Don't have a profile? Join now! Joining is absolutely free and no personal information is required.

manicpuzzler

LOL Clever :))

msbonne

Don't tell that to the trees.

manicpuzzler

☻/
/▌High Five :))
/ \

Rings only count if they are on a finger! :))

LOL :))

hippo

Actually The Phoebe ring of Saturn is vast. Some 26 million miles in diameter...

racoonstar

Saturn's rings are about double the diameter of Jupiter, so the correct answer is f). :D

wjl1015

:))

nanab

Yes!

msbonne

This was easy to Cee.

If you look at the sizes of the planets, it is easy to Cee that Jupiter is really, really, big.

c) Jupiter.

Stillmanic

And the answer is................ e) Jupiter

Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass one-thousandth that of the Sun, but two-and-a-half times that of all the other planets in the Solar System combined. Jupiter is one of the brightest objects visible to the naked eye in the night sky, and has been known to ancient civilizations since before recorded history. It is named after the Roman god Jupiter. When viewed from Earth, Jupiter can be bright enough for its reflected light to cast shadows, and is on average the third-brightest natural object in the night sky after the Moon and Venus.
Jupiter is primarily composed of hydrogen with a quarter of its mass being helium, though helium comprises only about a tenth of the number of molecules. It may also have a rocky core of heavier elements, but like the other giant planets, Jupiter lacks a well-defined solid surface. Because of its rapid rotation, the planet's shape is that of an oblate spheroid (it has a slight but noticeable bulge around the equator). The outer atmosphere is visibly segregated into several bands at different latitudes, resulting in turbulence and storms along their interacting boundaries. A prominent result is the Great Red Spot, a giant storm that is known to have existed since at least the 17th century when it was first seen by telescope. Surrounding Jupiter is a faint planetary ring system and a powerful magnetosphere. Jupiter has 79 known moons, including the four large Galilean moons discovered by Galileo Galilei in 1610. Ganymede, the largest of these, has a diameter greater than that of the planet Mercury.
Jupiter has been explored on several occasions by robotic spacecraft, most notably during the early Pioneer and Voyager flyby missions and later by the Galileo obiter. In late February 2007, Jupiter was visited by the New Horizons probe, which used Jupiter's gravity to increase its speed and bend its trajectory en route to Pluto. The latest probe to visit the planet is Juno, which entered into orbit around Jupiter on July 4, 2016. Future targets for exploration in the Jupiter system include the probable ice-covered liquid ocean of its moon Europa.
Astronomers have discovered nearly 500 planetary systems with multiple planets. Regularly these systems include a few planets with masses several times greater than Earth's (super-Earths), orbiting closer to their star than Mercury is to the Sun, and sometimes also Jupiter-mass gas giants close to their star. Earth and its neighbour planets may have formed from fragments of planets after collisions with Jupiter destroyed those super-Earths near the Sun. As Jupiter came toward the inner Solar System, in what theorists call the grand tack hypothesis, gravitational tugs and pulls occurred causing a series of collisions between the super-Earths as their orbits began to overlap. Researchers from Lund University found that Jupiter's migration went on for around 700,000 years, in a period approximately 2–3 million years after the celestial body started its life as an ice asteroid far from the sun. The journey inwards in the solar system followed a spiralling course in which Jupiter continued to circle around the sun, albeit in an increasingly tight path. The reason behind the actual migration relates to gravitational forces from the surrounding gases in the solar system. Jupiter moving out of the inner Solar System would have allowed the formation of inner planets, including Earth.
Jupiter is composed primarily of gaseous and liquid matter. It is the largest planet in the Solar System. It has a diameter of 142,984 km (88,846 mi) at its equator. The average density of Jupiter, 1.326 g/cm3, is the second highest of the giant planets, but lower than those of the four terrestrial planets.
Composition
Jupiter's upper atmosphere is about 88–92% hydrogen and 8–12% helium by percent volume of gas molecules. A helium atom has about four times as much mass as a hydrogen atom, so the composition changes when described as the proportion of mass contributed by different atoms. Thus, Jupiter's atmosphere is approximately 75% hydrogen and 24% helium by mass, with the remaining one percent of the mass consisting of other elements. The atmosphere contains trace amounts of methane, water vapour, ammonia, and silicon-based compounds. There are also traces of carbon, ethane, hydrogen sulphide, neon, oxygen, phosphine, and sulphur. The outermost layer of the atmosphere contains crystals of frozen ammonia. The interior contains denser materials—by mass it is roughly 71% hydrogen, 24% helium, and 5% other elements. Through infrared and ultraviolet measurements, trace amounts of benzene and other hydrocarbons have also been found.
The atmospheric proportions of hydrogen and helium are close to the theoretical composition of the primordial solar nebula. Neon in the upper atmosphere only consists of 20 parts per million by mass, which is about a tenth as abundant as in the Sun. Helium is also depleted to about 80% of the Sun's helium composition. This depletion is a result of precipitation of these elements into the interior of the planet.
Based on spectroscopy, Saturn is thought to be similar in composition to Jupiter, but the other giant planets Uranus and Neptune have relatively less hydrogen and helium and relatively more ices and are thus now termed ice giants.
Jupiter's diameter is one order of magnitude smaller (×0.10045) than that of the Sun, and one order of magnitude larger (×10.9733) than that of Earth. The Great Red Spot is roughly the same size as Earth.
Jupiter's mass is 2.5 times that of all the other planets in the Solar System combined—this is so massive that its barycentre with the Sun lies above the Sun's surface at 1.068 solar radii from the Sun's centre. Jupiter is much larger than Earth and considerably less dense: its volume is that of about 1,321 Earths, but it is only 318 times as massive. Jupiter's radius is about 1/10 the radius of the Sun, and its mass is 0.001 times the mass of the Sun, so the densities of the two bodies are similar. A "Jupiter mass" (MJ or MJup) is often used as a unit to describe masses of other objects, particularly extrasolar planets and brown dwarfs. So, for example, the extra solar planet HD 209458 b has a mass of 0.69 MJ, while Kappa Andromedae b has a mass of 12.8 MJ.
Theoretical models indicate that if Jupiter had much more mass than it does at present, it would shrink. For small changes in mass, the radius would not change appreciably, and above about 500 M⊕ (1.6 Jupiter masses) the interior would become so much more compressed under the increased pressure that its volume would decrease despite the increasing amount of matter. As a result, Jupiter is thought to have about as large a diameter as a planet of its composition and evolutionary history can achieve. The process of further shrinkage with increasing mass would continue until appreciable stellar ignition was achieved, as in high-mass brown dwarfs having around 50 Jupiter masses.
Although Jupiter would need to be about 75 times as massive to fuse hydrogen and become a star, the smallest red dwarf is only about 30 percent larger in radius than Jupiter. Despite this, Jupiter still radiates more heat than it receives from the Sun; the amount of heat produced inside it is similar to the total solar radiation it receives. This additional heat is generated by the Kelvin–Helmholtz mechanism through contraction. This process causes Jupiter to shrink by about 2 cm each year. When it was first formed, Jupiter was much hotter and was about twice its current diameter.
Jupiter is thought to consist of a dense core with a mixture of elements, a surrounding layer of liquid metallic hydrogen with some helium, and an outer layer predominantly of molecular hydrogen. Beyond this basic outline, there is still considerable uncertainty. The core is often described as rocky, but its detailed composition is unknown, as are the properties of materials at the temperatures and pressures of those depths. In 1997, the existence of the core was suggested by gravitational measurements, indicating a mass of from 12 to 45 times that of Earth, or roughly 4%–14% of the total mass of Jupiter. The presence of a core during at least part of Jupiter's history is suggested by models of planetary formation that require the formation of a rocky or icy core massive enough to collect its bulk of hydrogen and helium from the protosolar nebula. Assuming it did exist, it may have shrunk as convection currents of hot liquid metallic hydrogen mixed with the molten core and carried its contents to higher levels in the planetary interior. A core may now be entirely absent, as gravitational measurements are not yet precise enough to rule that possibility out entirely.
The uncertainty of the models is tied to the error margin in hitherto measured parameters: one of the coefficients used to describe the planet's gravitational moment (J6), Jupiter's equatorial radius, and its temperature at the 1-bar pressure depth. The Juno mission, which arrived in July 2016, is expected to further constrain the values of these parameters for better models of the core.
The core region may be surrounded by dense metallic hydrogen, which extends outward to about 78% of the radius of the planet. Rain-like droplets of helium and neon precipitate downward through this layer, depleting the abundance of these elements in the upper atmosphere. Rainfalls of extraterrestrial diamonds have been suggested to occur on Jupiter, as well as on Saturn and the ice giants Uranus and Neptune.
Above the layer of metallic hydrogen lies a transparent interior atmosphere of hydrogen. At this depth, the pressure and temperature are above hydrogen's critical pressure of 1.2858 MPa and critical temperature of only 32.938 K. In this state, there are no distinct liquid and gas phases—hydrogen is said to be in a supercritical fluid state. It is convenient to treat hydrogen as gas in the upper layer extending downward from the cloud layer to a depth of about 1,000 km, and as liquid in deeper layers. Physically, there is no clear boundary—the gas smoothly becomes hotter and denser as one descends.
The temperature and pressure inside Jupiter increase steadily toward the core, due to the Kelvin–Helmholtz mechanism. At the pressure level of 10 bars (1 MPa), the temperature is around 340 K (67 °C; 152 °F). At the phase transition region where hydrogen—heated beyond its critical point—becomes metallic, it is calculated the temperature is 10,000 K (9,700 °C; 17,500 °F) and the pressure is 200 GPa. The temperature at the core boundary is estimated to be 36,000 K (35,700 °C; 64,300 °F) and the interior pressure is roughly 3,000–4,500 GPa.

manicpuzzler

LOL :)) :))

msbonne

I have enough trouble trying to spell CAT.

manicpuzzler

LOL me either! :))

hippo

I am not going to criticise anyone for their spelling who can spell Appaloosa!!

manicpuzzler

Well done, in advance everyone :))

 ⁰⁀⁰*ʕ๑‿๑ʔ*⁰⁀⁰*ʕ๑‿๑ʔ*⁰⁀⁰ 

That would be good to see Heidi :)

ringleader

I think I know this one. Thanks, Bonnie.

:)

Juba1010

I would have too if I hadn’t googled it

Surreal_Heidi

Oops... I misspelled it. I'm so embarrassed.

Juba1010

Just try not to say Betelgeuse three times in a row....

Surreal_Heidi

I know this one, too!


By the way, have you heard that Betelguise (the brightest star in the Orion constellation) is preparing to go nova. They don't know when, exactly, but they say it will be so bright that the light will be visible in daylight here for a long time. The educated guess as to when this will happen is within the next 100 years, but probably not in the next couple of decades.

msbonne

It's that really big one, right?

wjl1015

:))

racoonstar

With or without counting the orbits of their satellites?

hippo

Great timing!

Watched the BBC Planets series only last week on DVD... :))

nanab

I know this one.

manicpuzzler

Dad Joke ……………..

Ice hockey is basically just guys wearing knife shoes fighting each other with long sticks for the last Oreo.